
Package: LocaTT (via r-universe)
August 21, 2024

Title Geographically-Conscious Taxonomic Assignment for Metabarcoding

Version 1.1.15

Description A bioinformatics pipeline for performing taxonomic
assignment of DNA metabarcoding sequence data while considering
geographic location. A detailed tutorial is available at
<https://urodelan.github.io/Local_Taxa_Tool_Tutorial/>. A
manuscript describing these methods is in preparation.

License GPL (>= 3)

URL https://github.com/Urodelan/LocaTT

BugReports https://github.com/Urodelan/LocaTT/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports utils, stats, parallel, taxize

Repository https://urodelan.r-universe.dev

RemoteUrl https://github.com/urodelan/locatt

RemoteRef HEAD

RemoteSha 90985b382b855450c6d68d7e1d8ab46d3864e5ff

Contents
adjust_taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
binomial_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
blast_command_found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
blast_version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
contains_wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
decode_quality_scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
expand_taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
filter_sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
format_reference_database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
get_consensus_taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1

https://urodelan.github.io/Local_Taxa_Tool_Tutorial/
https://github.com/Urodelan/LocaTT
https://github.com/Urodelan/LocaTT/issues


2 adjust_taxonomies

get_taxonomic_level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
get_taxonomies.IUCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
get_taxonomies.species_binomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
isolate_amplicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
local_taxa_tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
merge_pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
read.fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
read.fastq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
reverse_complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
substitute_wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
summarize_quality_scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
trim_sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
truncate_and_merge_pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
truncate_sequences.length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
truncate_sequences.probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
truncate_sequences.quality_score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
write.fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
write.fastq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Index 38

adjust_taxonomies Adjust Taxonomies

Description

Performs adjustments to a taxonomy system according to a taxonomy edits file.

Usage

adjust_taxonomies(
path_to_input_file,
path_to_output_file,
path_to_taxonomy_edits

)

Arguments

path_to_input_file

String specifying path to list of species (in CSV format) whose taxonomies are
to be adjusted. The file should contain the following fields: ’Common_Name’,
’Domain’, ’Phylum’, ’Class’, ’Order’, ’Family’, ’Genus’, ’Species’. There
should be no NAs or blanks in the taxonomy fields, and the species field should
contain the binomial name. Additional fields may be present in the input file,
and fields can be in any order.

path_to_output_file

String specifying path to output species list with adjusted taxonomies. The out-
put file will be in CSV format.



binomial_test 3

path_to_taxonomy_edits

String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: ’Old_Taxonomy’, ’New_Taxonomy’, ’Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the ’Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon.

Value

No return value. Writes an output CSV file with adjusted taxonomies.

See Also

get_taxonomies.species_binomials for remotely fetching NCBI taxonomies from species bi-
nomials.

get_taxonomies.IUCN for formatting taxonomies from the IUCN Red List.

Examples

print("Insert example here.")

binomial_test Binomial Test

Description

Performs binomial tests.

Usage

binomial_test(k, n, p, alternative = "greater")

Arguments

k A numeric vector of the number of successes.

n A numeric vector of the number of trials.

p A numeric vector of the hypothesized probabilities of success.

alternative A string specifying the alternative hypothesis. Must be "less" or "greater"
(the default).

Details

Calls on the pbinom function in the stats package to perform vectorized binomial tests. Arguments
are recycled as in pbinom. Only one-sided tests are supported, and only p-values are returned.



4 blast_version

Value

A numeric vector of p-values from the binomial tests.

Examples

binomial_test(k=c(5,1,7,4),
n=c(10,3,15,5),
p=c(0.2,0.1,0.5,0.6),
alternative="greater")

blast_command_found Check BLAST Installation

Description

Checks whether a BLAST program can be found.

Usage

blast_command_found(blast_command)

Arguments

blast_command String specifying the path to a BLAST program.

Value

Logical. Returns TRUE if the BLAST program could be found.

Examples

blast_command_found(blast_command="blastn")

blast_version Get BLAST Version

Description

Gets the version of a BLAST program.

Usage

blast_version(blast_command = "blastn")



contains_wildcards 5

Arguments

blast_command String specifying the path to a BLAST program. The default ('blastn') should
return the version of the blastn program for standard BLAST installations. The
user can provide a path to a BLAST program for non-standard BLAST installa-
tions.

Value

Returns a string of the version of the BLAST program.

Examples

blast_version()

contains_wildcards Check Whether DNA Sequences Contain Wildcard Characters

Description

Checks whether DNA sequences contain wildcard characters.

Usage

contains_wildcards(sequences)

Arguments

sequences A character vector of DNA sequences.

Value

A logical vector indicating whether each DNA sequence contains wildcard characters.

Examples

contains_wildcards(sequences=c("TKCTAGGTGW","CATAATTAGG","ATYGGCTATG"))



6 expand_taxonomies

decode_quality_scores Decode DNA Sequence Quality Scores

Description

Decodes Phred quality scores in Sanger format from symbols to numeric values.

Usage

decode_quality_scores(symbols)

Arguments

symbols A string containing quality scores encoded as symbols in Sanger format.

Value

A numeric vector of Phred quality scores.

Examples

decode_quality_scores(symbols="989!.C;F@\"")

expand_taxonomies Expand Taxonomies

Description

Extracts each taxonomic level from a vector of taxonomic strings.

Usage

expand_taxonomies(
taxonomies,
levels = c("Domain", "Phylum", "Class", "Order", "Family", "Genus", "Species"),
full_names = TRUE,
delimiter = ";",
ignore

)



filter_sequences 7

Arguments

taxonomies A character vector of taxonomic strings.

levels A character vector of taxonomic level names. The length of levels determines
the number of taxonomic levels to extract from the taxonomies, and the order
of elements in levels is assumed to match the order of taxonomic levels in the
taxonomies. levels is also used as the field names of the returned data frame
(see return value section). The default vector includes: "Domain", "Phylum",
"Class", "Order", "Family", "Genus", and "Species".

full_names Logical. If TRUE (the default), then full taxonomies are returned down to the
extracted taxonomic level. If FALSE, then only the extracted taxonomic level is
returned.

delimiter A character string of the delimiter between taxonomic levels in the input tax-
onomies. The default is ";".

ignore An optional character vector of taxonomic strings for which taxonomic expan-
sion will be skipped. In the returned data frame (see return value section), the
record for each skipped taxonomic string will be filled with NAs.

Value

Returns a data frame of extracted taxonomic levels. One record for each element of taxonomies,
and one field for each element of levels. Field names are inherited from levels. If a taxonomic
level is not present in a taxonomic string, then the respective cell in the returned data frame will
contain NA.

See Also

get_taxonomic_level for extracting a taxonomic level from taxonomic strings.

get_consensus_taxonomy for generating a consensus taxonomy from taxonomic strings.

Examples

print("Insert example here.")

filter_sequences Filter DNA Sequences by PCR Replicates

Description

Filters DNA sequences by minimum read count within a PCR replicate, minimum proportion within
a PCR replicate, and number of detections across PCR replicates.



8 filter_sequences

Usage

filter_sequences(
input_files,
samples,
PCR_replicates,
output_file,
minimum_reads.PCR_replicate = 1,
minimum_reads.sequence = 1,
minimum_proportion.sequence = 0.005,
binomial_test.enabled = TRUE,
binomial_test.p.adjust.method = "none",
binomial_test.alpha_level = 0.05,
minimum_PCR_replicates = 2,
delimiter.read_counts = ": ",
delimiter.PCR_replicates = ", "

)

Arguments

input_files A character vector of file paths to input FASTA files. DNA sequences in the
input FASTA files are assumed to be summarized by frequency of occurrence,
with each FASTA header line beginning with "Frequency: " and followed by the
sequence’s read count. Output FASTA files from truncate_and_merge_pairs
have this format and can be used directly with this function. Each input FASTA
file is assumed to contain the DNA sequence reads for a single PCR replicate
for a single sample.

samples A character vector of sample identifiers, with one element for each element of
input_files.

PCR_replicates A character vector of PCR replicate identifiers, with one element for each ele-
ment of input_files.

output_file String specifying path to output file of filtered sequences in CSV format.

minimum_reads.PCR_replicate

Numeric. PCR replicates which contain fewer reads than this value are discarded
and do not contribute detections to any sequence. The default is 1 (i.e., no PCR
replicates discarded).

minimum_reads.sequence

Numeric. For a sequence to be considered detected within a PCR replicate, the
sequence’s read count within the PCR replicate must match or exceed this value.
The default is 1 (i.e., no filtering by minimum read count within PCR replicates).

minimum_proportion.sequence

Numeric. For a sequence to be considered detected within a PCR replicate, the
proportion of reads in the PCR replicate comprised by the sequence must ex-
ceed this value. If binomial_test.enabled = TRUE, then this argument is used
as the null hypothesis for a one-sided binomial test, and a significance test is
used to determine whether the minimum proportion requirement for detection



filter_sequences 9

is satisfied instead. See the binomial_test.enabled argument below. The de-
fault is 0.005 (i.e., 0.5%). To disable sequence filtering by minimum proportion
within PCR replicates, set to 0.

binomial_test.enabled

Logical. If TRUE (the default), then for a sequence to be considered detected
within a PCR replicate, the proportion of reads in the PCR replicate comprised
by the sequence must significantly exceed the value of the minimum_proportion.sequence
argument at the provided alpha level (binomial_test.alpha_level argument)
based on a one-sided binomial test (i.e., binomial_test with alternative =
"greater"). Optionally, p-values within a PCR replicate can be adjusted for
multiple hypothesis testing by setting the binomial_test.p.adjust.method
argument below. To disable significance testing, set to FALSE (minimum propor-
tion filtering will still occur if minimum_proportion.sequence > 0, see above).

binomial_test.p.adjust.method

String specifying the p-value adjustment method for multiple hypothesis test-
ing. p-value adjustments are performed within each PCR replicate for each
sample. Passed to the method argument of p.adjust in the stats package.
Available methods are contained within the stats::p.adjust.methods vector.
If "none" (the default), then p-value adjustments are not performed. Ignored if
binomial_test.enabled = FALSE.

binomial_test.alpha_level

Numeric. The alpha level used in deciding whether the proportion of reads
in a PCR replicate comprised by a sequence significantly exceeds a minimum
threshold required for detection. See the binomial_test.enabled argument.
The default is 0.05. Ignored if binomial_test.enabled = FALSE.

minimum_PCR_replicates

Numeric. The minimum number of PCR replicates in which a sequence must be
detected in order to be considered present (i.e., not erroneous) in a sample. The
default is 2.

delimiter.read_counts

String specifying the delimiter between PCR replicate identifiers and sequence
read counts in the Read_count_by_PCR_replicate field of the output CSV file
(see details section). The default is ": ".

delimiter.PCR_replicates

String specifying the delimiter between PCR replicates in the Read_count_by_PCR_replicate
field of the output CSV file (see details section). The default is ", ".

Details

For each set of input polymerase chain reaction (PCR) replicate FASTA files associated with a
sample, writes out DNA sequences which are detected across a minimum number of PCR repli-
cates (minimum_PCR_replicates argument). Detection within a PCR replicate is defined as a
sequence having at least a minimum read count and exceeding a minimum proportion of reads
(minimum_reads.sequence and minimum_proportion.sequence arguments, respectively). When
binomial_test.enabled = TRUE, a sequence must significantly exceed the minimum proportion
within a PCR replicate at the provided alpha level (binomial_test.alpha_level argument) based
on a one-sided binomial test (i.e., binomial_test with alternative = "greater"). Within a PCR
replicate, p-values can be adjusted for multiple hypothesis testing by setting the binomial_test.p.adjust.method



10 filter_sequences

argument (see stats::p.adjust.methods and p.adjust in the stats package). PCR replicates
which contain fewer than a minimum number of reads are discarded (minimum_reads.PCR_replicate
argument) and do not contribute detections to any sequence.

DNA sequences in the input FASTA files are assumed to be summarized by frequency of occur-
rence, with each FASTA header line beginning with "Frequency: " and followed by the sequence’s
read count. Output FASTA files from truncate_and_merge_pairs have this format and can be
used directly with this function. Each input FASTA file is assumed to contain the DNA sequence
reads for a single PCR replicate for a single sample.

For pipeline calibration purposes, a data frame containing unfiltered DNA sequences with their
read counts, proportions, and p-values in each PCR replicate is invisibly returned (see return value
section). While the primary output of this function is the written CSV file of filtered sequences
(described below), the invisibly returned data frame of unfiltered sequences can be helpful when
calibrating or troubleshooting filtering parameters. To aid in troubleshooting filtering parameters,
the data frame is invisibly returned even if the error "Filtering removed all sequences" is received.

For the primary output, this function writes a CSV file of filtered DNA sequences with the fol-
lowing field definitions:

• Sample: The sample name.

• Sequence: The DNA sequence.

• Detections_across_PCR_replicates: The number of PCR replicates the sequence was detected
in.

• Read_count_by_PCR_replicate: The sequence’s read count in each PCR replicate the se-
quence was detected in.

• Sequence_read_count: The sequence’s total read count across the PCR replicates the sequence
was detected in. Calculated as the sum of the read counts in the Read_count_by_PCR_replicate
field.

• Sample_read_count: The sample’s total read count across all sequences detected in the PCR
replicates. Calculated as the sum of the read counts in Sequence_read_count field associated
with the sample.

• Proportion_of_sample: The proportion of sample reads comprised by the sequence. Calcu-
lated by dividing the Sequence_read_count field by the Sample_read_count field. Equivalent
to the weighted average of the sequence’s proportion in each PCR replicate, with weights
given by the proportion of the sample’s total reads contained in each PCR replicate.

Value

Invisibly returns a data frame containing unfiltered DNA sequences with their read counts, propor-
tions, and p-values in each PCR replicate. While the primary output of this function is the written
CSV file of filtered sequences described in the details section, the invisibly returned data frame of
unfiltered sequences can be helpful when calibrating or troubleshooting filtering parameters. To aid
in troubleshooting filtering parameters, the data frame is invisibly returned even if the error "Fil-
tering removed all sequences" is received. Field definitions for the invisibly returned data frame of
unfiltered sequences are:

• Sample: The sample name.



format_reference_database 11

• PCR_replicate: The PCR replicate identifier.

• Sequence: The DNA sequence.

• Read_count.sequence: The sequence’s read count within the PCR replicate.

• Read_count.PCR_replicate: The number of reads in the PCR replicate.

• Proportion_of_PCR_replicate.observed: The proportion of reads in the PCR replicate com-
prised by the sequence.

• Proportion_of_PCR_replicate.null (Field only present if binomial_test.enabled = TRUE):
The null hypothesis for a one-sided binomial test (inherited from the minimum_proportion.sequence
argument). See the p.value field below.

• p.value (Field only present if binomial_test.enabled = TRUE): The p-value from a one-
sided binomial test of whether the proportion of reads in the PCR replicate comprised by the
sequence exceeds the null hypothesis (i.e., binomial_test with alternative = "greater").

• p.value.adjusted (Field only present if binomial_test.enabled = TRUE): The p-value from
the one-sided binomial test adjusted for multiple comparisons within each PCR replicate for
each sample. See the p.value_adjustment_method field below.

• p.value_adjustment_method (Field only present if binomial_test.enabled = TRUE): The p-
value adjustment method (inherited from the binomial_test.p.adjust.method argument).

References

A manuscript describing these methods is in preparation.

See Also

binomial_test for performing vectorized one-sided binomial tests.

truncate_and_merge_pairs for truncating and merging read pairs prior to sequence filtering.

local_taxa_tool for performing geographically-conscious taxonomic assignment of filtered se-
quences.

Examples

print("Insert example here.")

format_reference_database

Format Reference Databases

Description

Formats reference databases from MIDORI or UNITE for use with the local_taxa_tool function.



12 format_reference_database

Usage

format_reference_database(
path_to_input_database,
path_to_output_database,
input_database_source = "MIDORI",
path_to_taxonomy_edits = NA,
path_to_sequence_edits = NA,
path_to_taxa_subset_list = NA,
makeblastdb_command = "makeblastdb",
...

)

Arguments

path_to_input_database

String specifying path to input reference database in FASTA format.
path_to_output_database

String specifying path to output BLAST database in FASTA format. File path
cannot contain spaces.

input_database_source

String specifying input reference database source ('MIDORI' or 'UNITE'). The
default is 'MIDORI'.

path_to_taxonomy_edits

String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: ’Old_Taxonomy’, ’New_Taxonomy’, ’Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the ’Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

path_to_sequence_edits

String specifying path to sequence edits file in CSV format. The file must
contain the following fields: ’Action’, ’Common_Name’, ’Domain’, ’Phylum’,
’Class’, ’Order’, ’Family’, ’Genus’, ’Species’, ’Sequence’, ’Notes’. The val-
ues in the ’Action’ field must be either ’Add’ or ’Remove’, which will add
or remove the respective sequence from the reference database. Values in the
’Common_Name’ field are optional. Values should be supplied to all taxonomy
fields. If using a reference database from MIDORI, then use NCBI superk-
ingdom names (e.g., ’Eukaryota’) in the ’Domain’ field. If using a reference
database from UNITE, then use kingdom names (e.g., ’Fungi’) in the ’Domain’
field. The ’Species’ field should contain species binomials. Sequence edits are
performed after taxonomy edits, if applied. If no sequence edits are desired,
then set this variable to NA (the default).

path_to_taxa_subset_list

String specifying path to list of species (in CSV format) to subset the reference
database to. This option is helpful if the user wants the reference database to
include only the sequences of local species. The file should contain the follow-
ing fields: ’Common_Name’, ’Domain’, ’Phylum’, ’Class’, ’Order’, ’Family’,
’Genus’, ’Species’. There should be no NAs or blanks in the taxonomy fields.



get_consensus_taxonomy 13

The species field should contain the binomial name without subspecies or other
information below the species level. There should be no duplicate species (i.e.,
multiple records with the same species binomial and taxonomy) in the species
list. Subsetting the reference database to the sequences of certain species is per-
formed after taxonomy and sequence edits are applied to the reference database,
and species must match at all taxonomic levels in order to be retained in the ref-
erence database. If subsetting the reference database to the sequences of certain
species is not desired, set this variable to NA (the default).

makeblastdb_command

String specifying path to the makeblastdb program, which is a part of BLAST.
The default ('makeblastdb') should work for standard BLAST installations.
The user can provide a path to the makeblastdb program for non-standard BLAST
installations.

... Accepts former argument names for backwards compatibility.

Value

No return value. Writes formatted BLAST database files.

See Also

local_taxa_tool for performing geographically-conscious taxonomic assignment.

adjust_taxonomies for adjusting a taxonomy system.

Examples

# Get path to example reference sequences FASTA file.
path_to_input_file<-system.file("extdata",

"example_reference_sequences.fasta",
package="LocaTT",
mustWork=TRUE)

# Create a temporary file path for the output reference database FASTA file.
path_to_output_file<-tempfile(fileext=".fasta")

# Format reference database.
format_reference_database(path_to_input_database=path_to_input_file,

path_to_output_database=path_to_output_file)

get_consensus_taxonomy

Get Consensus Taxonomy from Taxonomic Strings

Description

Gets the consensus taxonomy from a vector of taxonomic strings.



14 get_taxonomic_level

Usage

get_consensus_taxonomy(taxonomies, full_names = TRUE, delimiter = ";")

Arguments

taxonomies A character vector of taxonomic strings.

full_names Logical. If TRUE (the default), then the full consensus taxonomy is returned.
If FALSE, then only the lowest taxonomic level of the consensus taxonomy is
returned.

delimiter A character string of the delimiter between taxonomic levels in the input tax-
onomies. The default is ";".

Value

A character string containing the taxonomy agreed upon by all input taxonomies. If the input
taxonomies are not the same at any taxonomic level, then NA is returned.

See Also

get_taxonomic_level for extracting a taxonomic level from taxonomic strings.

expand_taxonomies for extracting each taxonomic level from a vector of taxonomic strings.

Examples

get_consensus_taxonomy(taxonomies=
c("Eukaryota;Chordata;Amphibia;Caudata;Ambystomatidae;Ambystoma;Ambystoma_mavortium",

"Eukaryota;Chordata;Amphibia;Anura;Bufonidae;Anaxyrus;Anaxyrus_boreas",
"Eukaryota;Chordata;Amphibia;Anura;Ranidae;Rana;Rana_luteiventris"),

full_names=TRUE,
delimiter=";")

get_taxonomic_level Get Specified Taxonomic Level from Taxonomic Strings

Description

Gets the specified taxonomic level from a vector of taxonomic strings.

Usage

get_taxonomic_level(taxonomies, level, full_names = TRUE, delimiter = ";")



get_taxonomies.IUCN 15

Arguments

taxonomies A character vector of taxonomic strings.

level A numeric value representing the taxonomic level to be extracted. A value of 1
retrieves the highest taxonomic level (e.g., domain) from the input taxonomies,
with each sequentially higher value retrieving sequentially lower taxonomic lev-
els. 0 is a special value which retrieves the lowest taxonomic level available in
the input taxonomies.

full_names Logical. If TRUE (the default), then full taxonomies are returned down to the
requested taxonomic level. If FALSE, then only the requested taxonomic level is
returned.

delimiter A character string of the delimiter between taxonomic levels in the input tax-
onomies. The default is ";".

Value

A character vector containing the requested taxonomic level for each element of the input tax-
onomies.

See Also

expand_taxonomies for extracting each taxonomic level from a vector of taxonomic strings.

get_consensus_taxonomy for generating a consensus taxonomy from taxonomic strings.

Examples

get_taxonomic_level(taxonomies=
c("Eukaryota;Chordata;Amphibia;Caudata;Ambystomatidae;Ambystoma;Ambystoma_mavortium",

"Eukaryota;Chordata;Amphibia;Anura;Bufonidae;Anaxyrus;Anaxyrus_boreas",
"Eukaryota;Chordata;Amphibia;Anura;Ranidae;Rana;Rana_luteiventris"),

level=5,
full_names=TRUE,
delimiter=";")

get_taxonomies.IUCN Get Taxonomies from IUCN Red List Files

Description

Formats taxonomies from IUCN Red List taxonomy.csv and common_names.csv files for use with
the local_taxa_tool function.



16 get_taxonomies.IUCN

Usage

get_taxonomies.IUCN(
path_to_taxonomies,
path_to_common_names,
path_to_output_file,
domain = "Eukaryota",
path_to_taxonomy_edits = NA,
...

)

Arguments

path_to_taxonomies

String specifying path to input IUCN Red List taxonomy.csv file.
path_to_common_names

String specifying path to input IUCN Red List common_names.csv file.
path_to_output_file

String specifying path to output species list (in CSV format) with formatted
taxonomies.

domain String specifying the domain name to use for all species. The IUCN Red List
files do not include domain information, so a domain name must be provided.
If using a reference database from UNITE, provide a kingdom name here (e.g.,
'Fungi'). The default is 'Eukaryota'.

path_to_taxonomy_edits

String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: ’Old_Taxonomy’, ’New_Taxonomy’, ’Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the ’Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

... Accepts former argument names for backwards compatibility.

Value

No return value. Writes an output CSV file with formatted taxonomies.

See Also

get_taxonomies.species_binomials for remotely fetching NCBI taxonomies from species bi-
nomials.

adjust_taxonomies for adjusting a taxonomy system.

Examples

# Get path to example taxonomy CSV file.
path_to_taxonomies<-system.file("extdata",

"example_taxonomy.csv",



get_taxonomies.species_binomials 17

package="LocaTT",
mustWork=TRUE)

# Get path to example common names CSV file.
path_to_common_names<-system.file("extdata",

"example_common_names.csv",
package="LocaTT",
mustWork=TRUE)

# Create a temporary file path for the output CSV file.
path_to_output_file<-tempfile(fileext=".csv")

# Format common names and taxonomies.
get_taxonomies.IUCN(path_to_taxonomies=path_to_taxonomies,

path_to_common_names=path_to_common_names,
path_to_output_file=path_to_output_file)

get_taxonomies.species_binomials

Get NCBI Taxonomies from Species Binomials

Description

Remotely fetches taxonomies from the NCBI taxonomy database for a list of species binomials.

Usage

get_taxonomies.species_binomials(
path_to_species_binomials,
path_to_output_file,
path_to_taxonomy_edits = NA,
print_queries = TRUE,
...

)

Arguments

path_to_species_binomials

String specifying path to input species list with common and scientific names.
The file should be in CSV format and contain the following fields: ’Com-
mon_Name’, ’Scientific_Name’. Values in the ’Common_Name’ field are op-
tional. Values in the ’Scientific_Name’ field are required.

path_to_output_file

String specifying path to output species list with added NCBI taxonomies. The
output file will be in CSV format.

path_to_taxonomy_edits

String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: ’Old_Taxonomy’, ’New_Taxonomy’, ’Notes’. Old



18 isolate_amplicon

taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the ’Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

print_queries Logical. Whether taxa queries should be printed. The default is TRUE.

... Accepts former argument names for backwards compatibility.

Value

No return value. Writes an output CSV file with added taxonomies. Species which could not be
found in the NCBI taxonomy database appear in the top records of the output file.

See Also

get_taxonomies.IUCN for formatting taxonomies from the IUCN Red List.

adjust_taxonomies for adjusting a taxonomy system.

Examples

# Get path to example input species binomials CSV file.
path_to_species_binomials<-system.file("extdata",

"example_species_binomials.csv",
package="LocaTT",
mustWork=TRUE)

# Create a temporary file path for the output CSV file.
path_to_output_file<-tempfile(fileext=".csv")

# Fetch taxonomies from species binomials.
get_taxonomies.species_binomials(path_to_species_binomials=path_to_species_binomials,

path_to_output_file=path_to_output_file,
print_queries=FALSE)

isolate_amplicon Trim DNA Sequences to an Amplicon Region Using Forward and Re-
verse Primer Sequences

Description

Trims DNA sequences to an amplicon region using forward and reverse primer sequences. Am-
biguous nucleotides in forward and reverse primers are supported.

Usage

isolate_amplicon(sequences, forward_primer, reverse_primer)



local_taxa_tool 19

Arguments

sequences A character vector of DNA sequences to trim to the amplicon region.

forward_primer A string specifying the forward primer sequence. Can contain ambiguous nu-
cleotides.

reverse_primer A string specifying the reverse primer sequence. Can contain ambiguous nucle-
todies.

Details

For each DNA sequence, nucleotides matching and preceding the forward primer are removed,
and nucleotides matching and following the reverse complement of the reverse primer are removed.
The reverse complement of the reverse primer is internally derived from the reverse primer using the
reverse_complement function. Ambiguous nucleotides in primers (i.e., the forward and reverse
primer arguments) are supported through the internal use of the substitute_wildcards function
on the forward primer and the reverse complement of the reverse primer, and primer regions in
DNA sequences are located using regular expressions. Trimming will fail for DNA sequences
which contain ambiguous nucleotides in their primer regions (e.g., Ns), resulting in NAs for those
sequences.

Value

A character vector of DNA sequences trimmed to the amplicon region. NAs are returned for DNA
sequences which could not be trimmed, which occurs when either primer region is missing from
the DNA sequence or when the forward primer region occurs after a region matching the reverse
complement of the reverse primer.

Examples

isolate_amplicon(sequences=c("ACACAATCGTGTTTATATTAACTTCAAGAGTGGGCATAGG",
"CGTGACAATCATGTTTGTGATTCGTACAAAAGTGCGTCCT"),

forward_primer="AATCRTGTTT",
reverse_primer="CSCACTHTTG")

local_taxa_tool Perform Geographically-Conscious Taxonomic Assignment

Description

Performs taxonomic assignment of DNA metabarcoding sequences while considering geographic
location.



20 local_taxa_tool

Usage

local_taxa_tool(
path_to_query_sequences,
path_to_BLAST_database,
path_to_output_file,
path_to_local_taxa_list = NA,
include_missing = FALSE,
blast_e_value = 1e-05,
blast_max_target_seqs = 2000,
blast_task = "megablast",
full_names = FALSE,
underscores = FALSE,
separator = ", ",
blastn_command = "blastn",
...

)

Arguments

path_to_query_sequences

String specifying path to FASTA file containing sequences to classify. File path
cannot contain spaces.

path_to_BLAST_database

String specifying path to BLAST reference database in FASTA format. File path
cannot contain spaces.

path_to_output_file

String specifying path to output file of classified sequences in CSV format.
path_to_local_taxa_list

String specifying path to list of local species in CSV format. The file should
contain the following fields: ’Common_Name’, ’Domain’, ’Phylum’, ’Class’,
’Order’, ’Family’, ’Genus’, ’Species’. There should be no ’NA’s or blanks in
the taxonomy fields. The species field should contain the binomial name with-
out subspecies or other information below the species level. There should be
no duplicate species (i.e., multiple records with the same species binomial and
taxonomy) in the local species list. If local taxa suggestions are not desired, set
this variable to NA (the default).

include_missing

Logical. If TRUE, then additional fields are included in the output CSV file in
which local sister taxonomic groups without reference sequences are added to
the local taxa suggestions. If FALSE (the default), then this is not performed.

blast_e_value Numeric. Maximum E-value of returned BLAST hits (lower E-values are asso-
ciated with more ’significant’ matches). The default is 1e-05.

blast_max_target_seqs

Numeric. Maximum number of BLAST target sequences returned per query
sequence. Enough target sequences should be returned to ensure that all mini-
mum E-value matches are returned for each query sequence. A warning will be
produced if this value is not sufficient. The default is 2000.



local_taxa_tool 21

blast_task String specifying BLAST task specification. Use 'megablast' (the default) to
find very similar sequences (e.g., intraspecies or closely related species). Use
'blastn-short' for sequences shorter than 50 bases. See the blastn program
help documentation for additional options and details.

full_names Logical. If TRUE, then full taxonomies are returned in the output CSV file. If
FALSE (the default), then only the lowest taxonomic levels (e.g., species bino-
mials instead of the full species taxonomies) are returned in the output CSV
file.

underscores Logical. If TRUE, then taxa names in the output CSV file use underscores instead
of spaces. If FALSE (the default), then taxa names in the output CSV file use
spaces.

separator String specifying the separator to use between taxa names in the output CSV
file. The default is ', '.

blastn_command String specifying path to the blastn program. The default ('blastn') should
work for standard BLAST installations. The user can provide a path to the
blastn program for non-standard BLAST installations.

... Accepts former argument names for backwards compatibility.

Details

Sequences are BLASTed against a global reference database, and the tool suggests locally occurring
species which are most closely related (by taxonomy) to any of the best-matching BLAST hits (by
bit score). Optionally, local sister taxonomic groups without reference sequences can be added to
the local taxa suggestions by setting the include_missing argument to TRUE. If a local taxa list
is not provided, then local taxa suggestions will be disabled, but all best-matching BLAST hits
will still be returned. Alternatively, a reference database containing just the sequences of local
species can be used, and local taxa suggestions can be disabled to return all best BLAST matches of
local species. The reference database should be formatted with the format_reference_database
function, and the local taxa lists can be prepared using the get_taxonomies.species_binomials
and get_taxonomies.IUCN functions. Output field definitions are:

• Sequence_name: The query sequence name.

• Sequence: The query sequence.

• Best_match_references: Species binomials of all best-matching BLAST hits (by bit score)
from the reference database.

• Best_match_E_value: The E-value associated with the best-matching BLAST hits.

• Best_match_bit_score: The bit score associated with the best-matching BLAST hits.

• Best_match_query_cover.mean: The mean query cover of all best-matching BLAST hits.

• Best_match_query_cover.SD: The standard deviation of query cover of all best-matching
BLAST hits.

• Best_match_PID.mean: The mean percent identity of all best-matching BLAST hits.

• Best_match_PID.SD: The standard deviation of percent identity of all best-matching BLAST
hits.



22 local_taxa_tool

• Local_taxa (Field only present if a path to a local taxa list is provided): The finest taxonomic
unit(s) which include both any species of the best-matching BLAST hits and any local species.
If the species of any of the best-matching BLAST hits are local, then the finest taxonomic
unit(s) are at the species level.

• Local_species (Field only present if a path to a local taxa list is provided): Species binomials
of all local species which belong to the taxonomic unit(s) in the Local_taxa field.

• Local_taxa.include_missing (Field only present if both a path to a local taxa list is provided
and the include_missing argument is set to TRUE): Local sister taxonomic groups without
reference sequences are added to the local taxa suggestions from the Local_taxa field.

• Local_species.include_missing (Field only present if both a path to a local taxa list is provided
and include_missing argument is set to TRUE): Species binomials of all local species which
belong to the taxonomic unit(s) in the Local_taxa.include_missing field.

Value

No return value. Writes an output CSV file with fields defined in the details section.

References

A manuscript describing this taxonomic assignment method is in preparation.

See Also

format_reference_database for formatting reference databases.

get_taxonomies.species_binomials and get_taxonomies.IUCN for creating local taxa lists.

adjust_taxonomies for adjusting a taxonomy system.

Examples

# Get path to example query sequences FASTA file.
path_to_query_sequences<-system.file("extdata",

"example_query_sequences.fasta",
package="LocaTT",
mustWork=TRUE)

# Get path to example BLAST reference database FASTA file.
path_to_BLAST_database<-system.file("extdata",

"example_blast_database.fasta",
package="LocaTT",
mustWork=TRUE)

# Get path to example local taxa list CSV file.
path_to_local_taxa_list<-system.file("extdata",

"example_local_taxa_list.csv",
package="LocaTT",
mustWork=TRUE)

# Create a temporary file path for the output CSV file.



merge_pairs 23

path_to_output_file<-tempfile(fileext=".csv")

# Run the local taxa tool.
local_taxa_tool(path_to_query_sequences=path_to_query_sequences,

path_to_BLAST_database=path_to_BLAST_database,
path_to_output_file=path_to_output_file,
path_to_local_taxa_list=path_to_local_taxa_list,
include_missing=TRUE,
full_names=TRUE,
underscores=TRUE)

merge_pairs Merge Forward and Reverse DNA Sequence Reads

Description

Merges forward and reverse DNA sequence reads.

Usage

merge_pairs(forward_reads, reverse_reads, minimum_overlap = 10)

Arguments

forward_reads A character vector of forward DNA sequence reads.

reverse_reads A character vector of reverse DNA sequence reads.
minimum_overlap

Numeric. The minimum length of an overlap that must be found between the
end of the forward read and the start of the reverse complement of the reverse
read in order for a read pair to be merged. The default is 10.

Details

For each pair of forward and reverse DNA sequence reads, the reverse complement of the reverse
read is internally derived using the reverse_complement function, and the read pair is merged
into a single sequence if an overlap of at least the minimum length is found between the end of
the forward read and the start of the reverse complement of the reverse read. If an overlap of the
minimum length is not found, then an NA is returned for the merged read pair.

Value

A character vector of merged DNA sequence read pairs. NAs are returned for read pairs which could
not be merged, which occurs when an overlap of at least the minimum length is not found between
the end of the forward read and the start of the reverse complement of the reverse read.

See Also

truncate_and_merge_pairs for truncating and merging forward and reverse DNA sequence reads.



24 read.fasta

Examples

merge_pairs(forward_reads=c("CCTTACGAATCCTGT","TTCTCCACCCGCGGATA","CGCCCGGAGTCCCTGTAGTA"),
reverse_reads=c("GACAAACAGGATTCG","CAATATCCGCGGGTG","TACTACAGGGACTCC"))

read.fasta Read FASTA Files

Description

Reads FASTA files. Supports the reading of FASTA files with sequences wrapping multiple lines.

Usage

read.fasta(file)

Arguments

file A string specifying the path to a FASTA file to read.

Value

A data frame with fields for sequence names and sequences.

See Also

write.fasta for writing FASTA files.

read.fastq for reading FASTQ files.

write.fastq for writing FASTQ files.

Examples

# Get path to example FASTA file.
path_to_fasta_file<-system.file("extdata",

"example_query_sequences.fasta",
package="LocaTT",
mustWork=TRUE)

# Read the example FASTA file.
read.fasta(file=path_to_fasta_file)



read.fastq 25

read.fastq Read FASTQ Files

Description

Reads FASTQ files. Does not support the reading of FASTQ files with sequences or quality scores
wrapping multiple lines.

Usage

read.fastq(file)

Arguments

file A string specifying the path to a FASTQ file to read.

Value

A data frame with fields for sequence names, sequences, comments, and quality scores.

See Also

write.fastq for writing FASTQ files.

read.fasta for reading FASTA files.

write.fasta for writing FASTA files.

Examples

# Get path to example FASTQ file.
path_to_fastq_file<-system.file("extdata",

"example_query_sequences.fastq",
package="LocaTT",
mustWork=TRUE)

# Read the example FASTQ file.
read.fastq(file=path_to_fastq_file)



26 substitute_wildcards

reverse_complement Get the Reverse Complement of a DNA Sequence

Description

Gets the reverse complement of a DNA sequence. Ambiguous nucleotides are supported.

Usage

reverse_complement(sequence)

Arguments

sequence A string specifying the DNA sequence. Can contain ambiguous nucleotides.

Value

A string of the reverse complement of the DNA sequence.

Examples

reverse_complement(sequence="TTCTCCASCCGCGGATHTTG")

substitute_wildcards Substitute Wildcard Characters in a DNA Sequence

Description

Substitutes wildcard characters in a DNA sequence with their associated nucleotides surrounded by
square brackets. The output is useful for matching in regular expressions.

Usage

substitute_wildcards(sequence)

Arguments

sequence A string specifying the DNA sequence containing wildcard characters.

Value

A string of the DNA sequence in which wildcard characters are replaced with their associated
nucleotides surrounded by square brackets.

Examples

substitute_wildcards(sequence="CAADATCCGCGGSTGGAGAA")



summarize_quality_scores 27

summarize_quality_scores

Summarize Quality Scores

Description

For each base pair position, summarizes Phred quality scores and the cumulative probability that all
bases were called correctly.

Usage

summarize_quality_scores(
forward_files,
reverse_files,
n.total = 10000,
n.each = ceiling(n.total/length(forward_files)),
seed = NULL,
FUN = mean,
...

)

Arguments

forward_files A character vector of file paths to FASTQ files containing forward DNA se-
quence reads.

reverse_files A character vector of file paths to FASTQ files containing reverse DNA sequence
reads.

n.total Numeric. The number of read pairs to randomly sample from the input FASTQ
files. Ignored if n.each is specified. The default is 10000.

n.each Numeric. The number of read pairs to randomly sample from each pair of input
FASTQ files. The default is ceiling(n.total/length(forward_files)).

seed Numeric. The seed for randomly sampling read pairs. If NULL (the default), then
a random seed is used.

FUN A function to compute summary statistics of the quality scores. The default is
mean.

... Additional arguments passed to FUN.

Details

For each combination of base pair position and read direction, calculates summary statistics of Phred
quality scores and the cumulative probability that all bases were called correctly. The cumulative
probability is calculated from the first base pair up to the current position. Quality scores are as-
sumed to be encoded in Sanger format. Read pairs are selected by randomly sampling up to n.each
read pairs from each pair of input FASTQ files. By default, n.each is derived from n.total, and
n.total will be ignored if n.each is provided. By default, mean is used to compute the summary



28 trim_sequences

statistics, but the user may provide another summary function instead (e.g., median). Functions
which return multiple summary statistics are also supported (e.g., summary and quantile). Argu-
ments in ... are passed to the summary function.

Value

Returns a data frame containing summary statistics of quality scores at each base pair position. The
returned data frame contains the following fields:

• Direction: The read direction (i.e., "Forward" or "Reverse").

• Position: The base pair position.

• Score: The summary statistic(s) of Phred quality scores. If FUN returns multiple summary
statistics, then a matrix of the summary statistics will be stored in this field, which can be
accessed with $Score.

• Probability: The summary statistic(s) of the cumulative probability that all bases were called
correctly. If FUN returns multiple summary statistics, then a matrix of the summary statistics
will be stored in this field, which can be accessed with $Probability.

See Also

decode_quality_scores for decoding quality scores.

Examples

print("Insert example here.")

trim_sequences Trim Target Nucleotide Sequence from DNA Sequences

Description

Trims a target nucleotide sequence from the front or back of DNA sequences. Ambiguous nu-
cleotides in the target nucleotide sequence are supported.

Usage

trim_sequences(
sequences,
target,
anchor = "start",
fixed = TRUE,
required = TRUE,
quality_scores

)



trim_sequences 29

Arguments

sequences A character vector of DNA sequences to trim.

target A string specifying the target nucleotide sequence.

anchor A string specifying whether the target nucleotide sequence should be trimmed
from the start or end of the DNA sequences. Allowable values are "start" (the
default) and "end".

fixed A logical value specifying whether the position of the target nucleotide sequence
should be fixed at the ends of the DNA sequences. If TRUE (the default), then the
position of the target nucleotide sequence is fixed at either the start or end of the
DNA sequences, depending on the value of the anchor argument. If FALSE, then
the target nucleotide sequence is searched for anywhere in the DNA sequences.

required A logical value specifying whether trimming is required. If TRUE (the default),
then sequences which could not be trimmed are returned as NAs. If FALSE, then
untrimmed sequences are returned along with DNA sequences for which trim-
ming was successful.

quality_scores An optional character vector of DNA sequence quality scores. If supplied, these
will be trimmed to their corresponding trimmed DNA sequences.

Details

For each DNA sequence, the target nucleotide sequence is searched for at either the front or back
of the DNA sequence, depending on the value of the anchor argument. If the target nucleotide
sequence is found, then it is removed from the DNA sequence. If the required argument is set to
TRUE, then DNA sequences in which the target nucleotide sequence was not found will be returned
as NAs. If the required argument is set to FALSE, then untrimmed DNA sequences will be returned
along with DNA sequences for which trimming was successful. Ambiguous nucleotides in the
target nucleotide sequence are supported through the internal use of the substitute_wildcards
function on the target nucleotide sequence, and a regular expression with a leading or ending anchor
is used to search for the target nucleotide sequence in the DNA sequences. If the fixed argument
is set to FALSE, then any number of characters are allowed between the start or end of the DNA
sequences and the target nucleotide sequence. Trimming will fail for DNA sequences which contain
ambiguous nucleotides (e.g., Ns) in their target nucleotide sequence region, resulting in NAs for those
sequences if the required argument is set to TRUE.

Value

If quality scores are not provided, then a character vector of trimmed DNA sequences is returned.
If quality scores are provided, then a list containing two elements is returned. The first element is a
character vector of trimmed DNA sequences, and the second element is a character vector of quality
scores which have been trimmed to their corresponding trimmed DNA sequences.

Examples

trim_sequences(sequences=c("ATATAGCGCG","TGCATATACG","ATCTATCACCGC"),
target="ATMTA",
anchor="start",
fixed=TRUE,



30 truncate_and_merge_pairs

required=TRUE,
quality_scores=c("989!.C;F@\"","A((#-#;,2F","HD8I/+67=1>?"))

truncate_and_merge_pairs

Truncate and Merge Forward and Reverse DNA Sequence Reads

Description

Removes DNA read pairs containing ambiguous nucleotides, truncates reads by length and quality
score, and merges forward and reverse reads.

Usage

truncate_and_merge_pairs(
forward_files,
reverse_files,
output_files,
truncation_length = NA,
threshold.quality_score = 3,
threshold.probability = 0.5,
minimum_overlap = 10,
cores = 1,
progress = FALSE

)

Arguments

forward_files A character vector of file paths to FASTQ files containing forward DNA se-
quence reads.

reverse_files A character vector of file paths to FASTQ files containing reverse DNA sequence
reads.

output_files A character vector of file paths to output FASTA files.
truncation_length

Numeric. The length to truncate DNA sequences to (passed to the length ar-
gument of truncate_sequences.length). If NA (the default), then DNA se-
quences are not truncated by length. If a single value is supplied, then both
forward and reverse reads are truncated to the same length. If two values are
supplied in a numeric vector, then the first value is used to truncate the forward
reads, and the second value is used to truncate the reverse reads. NA can also be
supplied as either the first or second element of the numeric vector to prevent
length truncation of the respective read direction while allowing the other read
direction to be length truncated.

threshold.quality_score

Numeric. The Phred quality score threshold used for truncation (passed to the
threshold argument of truncate_sequences.quality_score). The default



truncate_and_merge_pairs 31

is 3 (i.e., each base in a truncated sequence has a greater than 50% probability
of having been called correctly). If NA, then DNA sequences are not truncated
by quality score threshold. If a single value is supplied, then both forward and
reverse reads are truncated by the same quality score threshold. If two values
are supplied in a numeric vector, then the first value is used to truncate the
forward reads, and the second value is used to truncate the reverse reads. NA can
also be supplied as either the first or second element of the numeric vector to
prevent quality-score-threshold truncation of the respective read direction while
allowing the other read direction to be quality-score-threshold truncated.

threshold.probability

Numeric. The probability threshold used for truncation (passed to the threshold
argument of truncate_sequences.probability). The default is 0.5 (i.e.,
each truncated sequence has a greater than 50% probability that all bases were
called correctly). If NA, then DNA sequences are not truncated by probability
threshold. If a single value is supplied, then both forward and reverse reads are
truncated by the same probability threshold. If two values are supplied in a nu-
meric vector, then the first value is used to truncate the forward reads, and the
second value is used to truncate the reverse reads. NA can also be supplied as
either the first or second element of the numeric vector to prevent probability-
threshold truncation of the respective read direction while allowing the other
read direction to be probability-threshold truncated.

minimum_overlap

Numeric. The minimum length of an overlap that must be found between the
end of the forward read and the start of the reverse complement of the reverse
read in order for a read pair to be merged (passed to merge_pairs). The default
is 10.

cores Numeric. If 1 (the default), then FASTQ file pairs are processed sequentially on
a single core. If greater than 1, then FASTQ file pairs are processed in parallel
across the specified number of cores. Parallel processing is not supported on
Windows.

progress Logical. If TRUE, then a progress indicator is printed to the console. Ignored if
cores > 1. If FALSE (the default), then no progress indicator is displayed.

Details

For each pair of input FASTQ files, removes DNA read pairs containing ambiguous nucleotides,
truncates reads by length, quality score threshold, and probability threshold (in that order), and
then merges forward and reverse reads. Merged reads are summarized by frequency of occur-
rence and written to a FASTA file. See contains_wildcards, truncate_sequences.length,
truncate_sequences.quality_score, truncate_sequences.probability, and merge_pairs
for methods. Quality scores are assumed to be encoded in Sanger format. Forward and reverse reads
can be truncated by different thresholds (see truncation_length, threshold.quality_score,
and threshold.probability arguments).

Multicore parallel processing is supported on Mac and Linux operating systems (not available on
Windows). When cores > 1 (parallel processing enabled), warnings and errors are printed to the
console in addition to being invisibly returned as a list (see the return value section), and errors
produced while processing a pair of FASTQ files will not interrupt the processing of other FASTQ



32 truncate_sequences.length

file pairs. When cores = 1, FASTQ file pairs are processed sequentially on a single core, and errors
will prevent the processing of subsequent FASTQ file pairs (but warnings will not).

Value

If cores = 1, then no return value. Writes a FASTA file for each pair of input FASTQ files with DNA
sequence counts stored in the header lines. If cores > 1, then also invisibly returns a list where each
element contains warning or error messages associated with processing each pair of input FASTQ
files. A NULL value in the returned list means that no warnings or errors were generated from
processing the respective pair of FASTQ files.

References

A manuscript describing these methods is in preparation.

See Also

contains_wildcards for detecting ambiguous nucleotides in DNA sequences.

truncate_sequences.length for truncating DNA sequences to a specified length.

truncate_sequences.quality_score for truncating DNA sequences by Phred quality score.

truncate_sequences.probability for truncating DNA sequences by cumulative probability that
all bases were called correctly.

merge_pairs for merging forward and reverse DNA sequence reads.

filter_sequences for filtering merged read pairs by PCR replicate.

Examples

print("Insert example here.")

truncate_sequences.length

Truncate DNA Sequences to Specified Length

Description

Truncates DNA sequences to a specified length.

Usage

truncate_sequences.length(sequences, length, quality_scores)



truncate_sequences.probability 33

Arguments

sequences A character vector of DNA sequences to truncate.

length Numeric. The length to truncate DNA sequences to.

quality_scores An optional character vector of DNA sequence quality scores. If supplied, these
will be truncated to their corresponding truncated DNA sequences.

Value

If quality scores are not provided, then a character vector of truncated DNA sequences is returned.
If quality scores are provided, then a list containing two elements is returned. The first element
is a character vector of truncated DNA sequences, and the second element is a character vector of
quality scores which have been truncated to their corresponding truncated DNA sequences.

See Also

truncate_sequences.quality_score for truncating DNA sequences by Phred quality score.

truncate_sequences.probability for truncating DNA sequences by cumulative probability that
all bases were called correctly.

truncate_and_merge_pairs for truncating and merging forward and reverse DNA sequence reads.

Examples

truncate_sequences.length(sequences=c("ATATAGCGCG","TGCCGATATA","ATCTATCACCGC"),
length=5,
quality_scores=c("989!.C;F@\"","A((#-#;,2F","HD8I/+67=1>?"))

truncate_sequences.probability

Truncate DNA Sequences at Specified Probability that All Bases were
Called Correctly

Description

Calculates the cumulative probability that all bases were called correctly along each DNA sequence
and truncates the DNA sequence immediately prior to the first occurrence of a probability being
equal to or less than a specified value.

Usage

truncate_sequences.probability(sequences, quality_scores, threshold = 0.5)



34 truncate_sequences.quality_score

Arguments

sequences A character vector of DNA sequences to truncate.

quality_scores A character vector of DNA sequence quality scores encoded in Sanger format.

threshold Numeric. The probability threshold used for truncation. The default is 0.5 (i.e.,
each truncated sequence has a greater than 50% probability that all bases were
called correctly).

Value

A list containing two elements. The first element is a character vector of truncated DNA sequences,
and the second element is a character vector of quality scores which have been truncated to their
corresponding truncated DNA sequences.

See Also

truncate_sequences.length for truncating DNA sequences to a specified length.

truncate_sequences.quality_score for truncating DNA sequences by Phred quality score.

truncate_and_merge_pairs for truncating and merging forward and reverse DNA sequence reads.

Examples

truncate_sequences.probability(sequences=c("ATATAGCGCG","TGCCGATATA","ATCTATCACCGC"),
quality_scores=c("989!.C;F@\"","A((#-#;,2F","HD8I/+67=1>?"),

threshold=0.5)

truncate_sequences.quality_score

Truncate DNA Sequences at Specified Quality Score

Description

Truncates DNA sequences immediately prior to the first occurrence of a Phred quality score being
equal to or less than a specified value.

Usage

truncate_sequences.quality_score(sequences, quality_scores, threshold = 3)

Arguments

sequences A character vector of DNA sequences to truncate.

quality_scores A character vector of DNA sequence quality scores encoded in Sanger format.

threshold Numeric. The Phred quality score threshold used for truncation. The default is
3 (i.e., each base in a truncated sequence has a greater than 50% probability of
having been called correctly).



write.fasta 35

Value

A list containing two elements. The first element is a character vector of truncated DNA sequences,
and the second element is a character vector of quality scores which have been truncated to their
corresponding truncated DNA sequences.

See Also

truncate_sequences.length for truncating DNA sequences to a specified length.

truncate_sequences.probability for truncating DNA sequences by cumulative probability that
all bases were called correctly.

truncate_and_merge_pairs for truncating and merging forward and reverse DNA sequence reads.

Examples

truncate_sequences.quality_score(sequences=c("ATATAGCGCG","TGCCGATATA","ATCTATCACCGC"),
quality_scores=c("989!.C;F@\"","A((#-#;,2F","HD8I/+67=1>?"),

threshold=3)

write.fasta Write FASTA Files

Description

Writes FASTA files.

Usage

write.fasta(names, sequences, file)

Arguments

names A character vector of sequence names.

sequences A character vector of sequences.

file A string specifying the path to a FASTA file to write.

Value

No return value. Writes a FASTA file.

See Also

read.fasta for reading FASTA files.

write.fastq for writing FASTQ files.

read.fastq for reading FASTQ files.



36 write.fastq

Examples

# Get path to example sequences CSV file.
path_to_CSV_file<-system.file("extdata",

"example_query_sequences.csv",
package="LocaTT",
mustWork=TRUE)

# Read the example sequences CSV file.
df<-read.csv(file=path_to_CSV_file,stringsAsFactors=FALSE)

# Create a temporary file path for the FASTA file to write.
path_to_FASTA_file<-tempfile(fileext=".fasta")

# Write the example sequences as a FASTA file.
write.fasta(names=df$Name,

sequences=df$Sequence,
file=path_to_FASTA_file)

write.fastq Write FASTQ Files

Description

Writes FASTQ files.

Usage

write.fastq(names, sequences, quality_scores, file, comments)

Arguments

names A character vector of sequence names.

sequences A character vector of sequences.

quality_scores A character vector of quality scores.

file A string specifying the path to a FASTQ file to write.

comments An optional character vector of sequence comments.

Value

No return value. Writes a FASTQ file.

See Also

read.fastq for reading FASTQ files.

write.fasta for writing FASTA files.

read.fasta for reading FASTA files.



write.fastq 37

Examples

# Get path to example sequences CSV file.
path_to_CSV_file<-system.file("extdata",

"example_query_sequences.csv",
package="LocaTT",
mustWork=TRUE)

# Read the example sequences CSV file.
df<-read.csv(file=path_to_CSV_file,stringsAsFactors=FALSE)

# Create a temporary file path for the FASTQ file to write.
path_to_FASTQ_file<-tempfile(fileext=".fastq")

# Write the example sequences as a FASTQ file.
write.fastq(names=df$Name,

sequences=df$Sequence,
quality_scores=df$Quality_score,
file=path_to_FASTQ_file,
comments=df$Comment)



Index

$Probability, 28
$Score, 28

adjust_taxonomies, 2, 13, 16, 18, 22

binomial_test, 3, 9, 11
blast_command_found, 4
blast_version, 4

contains_wildcards, 5, 31, 32

decode_quality_scores, 6, 28

expand_taxonomies, 6, 14, 15

filter_sequences, 7, 32
format_reference_database, 11, 21, 22

get_consensus_taxonomy, 7, 13, 15
get_taxonomic_level, 7, 14, 14
get_taxonomies.IUCN, 3, 15, 18, 21, 22
get_taxonomies.species_binomials, 3, 16,

17, 21, 22

isolate_amplicon, 18

local_taxa_tool, 11, 13, 15, 19

mean, 27
median, 28
merge_pairs, 23, 31, 32

p.adjust, 9, 10
pbinom, 3

quantile, 28

read.fasta, 24, 25, 35, 36
read.fastq, 24, 25, 35, 36
reverse_complement, 19, 23, 26

stats, 3, 9, 10

substitute_wildcards, 19, 26, 29
summarize_quality_scores, 27
summary, 28

trim_sequences, 28
truncate_and_merge_pairs, 8, 10, 11, 23,

30, 33–35
truncate_sequences.length, 30–32, 32, 34,

35
truncate_sequences.probability, 31–33,

33, 35
truncate_sequences.quality_score,

30–34, 34

write.fasta, 24, 25, 35, 36
write.fastq, 24, 25, 35, 36

38


	adjust_taxonomies
	binomial_test
	blast_command_found
	blast_version
	contains_wildcards
	decode_quality_scores
	expand_taxonomies
	filter_sequences
	format_reference_database
	get_consensus_taxonomy
	get_taxonomic_level
	get_taxonomies.IUCN
	get_taxonomies.species_binomials
	isolate_amplicon
	local_taxa_tool
	merge_pairs
	read.fasta
	read.fastq
	reverse_complement
	substitute_wildcards
	summarize_quality_scores
	trim_sequences
	truncate_and_merge_pairs
	truncate_sequences.length
	truncate_sequences.probability
	truncate_sequences.quality_score
	write.fasta
	write.fastq
	Index

